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• Motivation: Why Logistic Regression?

• Sigmoid functions and the logit transformation

• Cost functions

• Optimization by Gradient Descent

• Using Logistic Regression to do Machine Learning



Linear Regression and Data Types

Linear Regression relates some number of independent variables

X1,  X2,  ...,  Xn

with a dependent or response variable Y. All are assumed to be real numbers: 



But probability and statistics deal with many different kinds of data, continuous and 
discrete, and we have dealt with at least the following during the semester:

o Real Numbers  -- Height, weight, time, X ~ N(𝜇, 𝜎2), … .
o Integers  -- Number of emails, Cards, X ~ B(N,p), ....
o Binary – Heads/Tails, Red/Black, X ~ Bern(p), ...

And there are other kinds of (discrete) data which statisticians must consider:

Categorical -- A finite list of unordered categories or labels, e.g., 

o Political parties (Republican, Democrat, Independent, Green. ...)
o Blood type (A, B, AB, O, ...)
o State lived in (MA, VT, ....)

Ordinal – Like categorical, but with an explicit ordering, e.g., 

o Class year (freshman, sophomore, ...)
o Grades (A, A-, B+, ...)
o Likert Scale (disagree strongly, disagree, neutral, agree, agree strongly)

Linear Regression and Data Types

Discrete

Continuous



The regression framework has been adapted to all these kinds of statistical information, 
but we will consider only the simplest: binary or Bernoulli data.

Logistic Regression is a modification of linear regression to deal with binary categories or 
binary outcomes. It relates some number of independent variables

X1,  X2,  ...,  Xn

with a Bernoulli dependent or response variable Y , i.e., RY = { 0, 1 }. It returns the
probability p for Y ~ Bernoulli(p), i.e., the probability P(Y = 1). 

Logistic regression can be used to provide the following kinds of binary outcomes:

o Given the results of medical tests A, B, C and D, does this patient have cancer?

o Given the credit score, annual salary, gender, and state of residency, will this 
customer default on the loan he/she is applying for?

o Is this email spam or not?

o Given a student’s homework and midterm grades, will he/she get an A in CS 
237?

o Given a person’s height, what is their gender?

Logistic Regression: The Basic Idea



Suppose we consider the last example. Men in general are taller than women (the average 
height of an American man is 5’ 9” and for women 5’ 4”), but can we use this datum to 
predict a person’s gender, or give the probability they are one or the other?

Let’s try it: we proceed to collect data from a random sample of 16 people, and plot  
X = height  against  Y = gender (1 for male, 0 for female):

Logistic Regression: A Motivating Example

Male:

Female:



If we plug this into the linear regression algorithm, we get the following:

Logistic Regression: Motivating Example

There are many issues with this:

How can we use this to predict 
someone’s gender from their height?

How to give the probability of their 
gender?

The R2 value is bound to be very low 
(here, 0.3828), so how useful is this? 

There is clearly no linear trend, so 
what does the line even mean?

In addition, there are technical and 
mathematical reasons why linear 
regression is not appropriate here. 



In order to solve this, we will use the same idea that we used for non-linear models: we 
will transform the scale of Y into a new domain, in this case into the real interval [0..1]. 

This is called the Logit Transformation, and is based on the notion of a sigmoid 
function                     of the form 

Notice that:

Logistic Regression: The Logit Transformation



The punchline here is that we will transform the regression line into a sigmoid, and use it 
to give us the probability that a given individual is male, and then define as a decision
boundary a threshold (typically 0.5) by which we will decide if the binary output is 1 or 0:

But in fact it is not that simple, because the least squares technique does not work
any more, and we will have to recast the regression framework around the sigmoid 
function.....

Logistic Regression: The Logit Transformation



Linear Regression:                                               Logistic Regression:

Logistic Regression: The Logit Transformation

This is called the “logit” 
or the “log odds ratio.”



In linear regression, we have explicit formulae for finding the 
parameters for the slope and y-intercept of the regression line 
which minimizes the mean square error (MSE):

But what if we didn’t?   We could then use an iterative approximation algorithm called 
Gradient Descent to find an approximation of the values which minimize the MSE.

Basic idea:  Define a cost or loss function J(...) which gives the cost or penalty measuring 
how well the model parameters fit the actual data (high cost = bad fit), and then search for 
the parameters which minimize this cost. 

So let’s pretend we didn’t have the formulae at the upper right, and suppose we needed to 
find them by gradient descent.  In linear regression this would mean finding values for                                     

and      which minimize the MSE, in other words minimize the cost function:

Reference:  https://ml-cheatsheet.readthedocs.io/en/latest/gradient_descent.html

Linear Regression Redux: Gradient Descent to find      and  

Cost Function
= MSE

The J in the cost function is 
used in machine learning 
and refers to the Jacobian 
Matrix. 



The Gradient Descent Algorithm:  A gradient is a generalization of a derivative to 
functions of more than one variable: 

In gradient descent, we pick a place to start, and move down the gradient until we find a 
minimum point:

Another nice summary:  https://hackernoon.com/gradient-descent-aynk-7cbe95a778da

Linear Regression Redux: Gradient Descent to find      and  

“Like the derivative, the gradient represents the slope of the tangent of 
the graph of the function. More precisely, the gradient points in the 
direction of the greatest rate of increase of the function, and its 
magnitude is the slope of the graph in that direction.” - Wikipedia

When the search space is 
convex, such as a 
paraboloid, there will be a 
single minimum!



To find the minimum value along one axis 
we will work with only one of the partial 
derivatives as a time, say the y-intercept:

Step One: Choose an initial point b0.          
Step Two: Choose a step size or learning rate 𝜆 and threshold of accuracy 𝜀.
Step Three: Move that distance along the axis, in the decreasing direction (the negative 
of the slope), and repeat until the distance moved is less than 𝜀.
Step Four: Output bn+1 as the minimum. 

Linear Regression Redux: Gradient Descent to find      and  



Gradient Descent for Linear Regression:

To find a point in multiple dimensions, we simply do all dimensions in the same way at the 
same time.  Here is the algorithm from the reading:

def update_weights(m, b, X, Y, learning_rate):
m_deriv = 0
b_deriv = 0
N = len(X)
for i in range(N):

# Calculate partial derivatives
# -2x(y - (mx + b))
m_deriv += -2*X[i] * (Y[i] - (m*X[i] + b))

# -2(y - (mx + b))
b_deriv += -2*(Y[i] - (m*X[i] + b))

# We subtract because the derivatives point in direction of steepest ascent
m -= (m_deriv / float(N)) * learning_rate
b -= (b_deriv / float(N)) * learning_rate

return m, b

Linear Regression Redux: Gradient Descent to find      and  



As the parameters are “tuned” to minimize the cost (= measuring how well the parameters fit 
the model) you get a better and better fit between the model and the data. You can run the 
gradient descent model as long as you wish to get a better fit. Obviously, defining the cost 
function and picking the learning rate and threshold are critical decisions, and much research 
has been devoted to different cost models and different approaches to gradient descent. 

Linear Regression Redux: Gradient Descent to find      and  



There are dozens of different cost functions that have been defined and even more varients of 
algorithms that perform minimization of a given cost function available in standard Python 
libraries:

Linear Regression Redux: Gradient Descent to find      and  



Even if we have successfully minimized the cost function, surely the cost will not be 0, which 
means that our model will not be perfect. How do we evaluate our model?

We can think of this algorithm as trying to learn the categories (0 or 1) that the independent 
variables belong to, and use our data itself to test the results. 

The basic idea is to take a random selection (say 80%) of our data set, find the best fitting 
parameters (called “training”) and then test it on the remaining 20%. The percentage of the 
remaining data that is successfully classified is the accuracy of our model:

Logistic Regression: Supervised Learning

Train

Test


